
1. INTRODUCTION 

It has been reported by Pugh(l) that some metals, notably zinc and bismuth, 
which are normally brittle in tension at NTP, become markedly ductile when tested 
under hydrostatic pressure. This transition from brittle to ductile behaviour 
is very sharp, the specimens being either very brittle or very ductile. Galli 
and Gibb(2) have suggested the empirical relationship between the brittle to 
ductile transition temperature, Tc ' and hydrostatic pressure, p, for molybdenum 

T = A , 
c ln (~t + p) + B 

( 1) 

where A and B are constants and ~t is the fracture stress at atmospheric pressure. 
pugh(3) suggested for zinc the empirical relationship 

Tc a A' - B'p, (2) 

where A' and B' are constants. A theory for the transition is given below. 

2. THEORY OF THE TRANSITION PRESSURE 

Near the brittle to ductile transition, brittle fracture occurs when the 
applied stress is sufficiently high to propagate a dislocation crack in a Griffith 
manner. If the applied stress is not high enough for this, fracture may occur by 
the linkage of many small cracks. It is thought that the propagation of a crack 
requires more energy than its initiation(4,5), and the analysis is based on this 
criterion. The calculation is similar to one due to Petch for the brittle-ductile 
transition temperature in mild steel(6). 

Consider a crack of length l at an angle e to the slip plane, wedged open by 
n dislocations of Burger's vector, b, under the action of the applied tensile 
stress, ~, at an angle rr/ 4 to the slip plane, Fig. 1 (the most favoured slip lines 
are those at rr/ 4 to the tensile stress). Let the applied hydrostatic pressure be 
p. If we assume that the hydrostatic pressure affects only the work done in open­
ing the crack, then the energy, W, of the crack under this stress system, represented 
in Fig. 1, is composed of the following. 

(1) The elastic ener~y of the stress field set up by the crack; this has 
calculated by Stroh(7 to be [(n 2b2G) / {4rr(1 - v)}] ln 4r/ l, where G is the 
rigidity modulus, v the Poisson's ratio and r the effective radius of the 
stress field. 

been 

(2) The surface energy of the crack; this is given by 2ly', where y' is the 
effective surface energy of the crack. This effective surface energy term 
includes the plastic work associated with the growth of the crack, and may be 
much greater than the true surface energy. 

(3) The elastic energy of the crack in the applied stress field; Stroh(8) 
calculates this to be 

The work of Sack(9) suggests that no great error results in ignoring the 
effect of the hydrostatic pressure. 

(4) The energy due to the increase in volume on opening the crack; this 
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consists of two parts , namely (a) the work done by the component of tensile 
stress normal to the crack, ( -nbl /2)~ sin {e - (~/4)}, and (b) the work 
done against the hydrostatic pressure (nbl / 2)p. 

The total energy of the crack is thus 

n~lCT sin (e _ ~) + n~lp. (3) 

Strictly, this equation applies only to a two-dimensional model but Sack(9), 
who extended the argument to a penny- shaped crack, showed that the difference 
will be a numerical factor only. 

For the crack to spread under the applied stress, W must decrease as l 
increases, and the length of the crack at equilibrium will be given by dW/ dl • O. 
Thus 

{ 
4'V4 l '} -=;:r; + P - ~ sin \e - ~) - ~(l - .v)~2. (4 ) 

Rearranging equation (4) we get 

The critical length of crack will occur when the roots of equation (5) are equal, 
and this will happen when 

4'V' 
~ + P ~ sin nb c - (6 ) 

where Pc is now the critical hydrostatic pressure for the transition from brittle 
to ductile fracture . Rearranging equation (6) we get as the critical condition 

( 7) 

If the left-hand side of equation (7) exceeds 4Y', then the crack will spread 
catastrophically. ' In practice, especially with the more ductile metals, plastic 
blunting of the crack may occur, in which case a higher value of ~ would be 
required for a given p. 

The value of n is obtained from the work of Eshelby, Frank and Nabarro(10). 
If a dislocation source is activated near the centre of a grain of diameter d, 
the maximum length of slip plane on which a crack can form is d/2. The applied 
shear stress will be t(~ - ~o), where t~o is the frictional shear stress opposing 
the motion of a free dislocation. The number of dislocations, n', that can be 
packed into a length d/ 2 under this applied stress is given by 

or 

2Gn'b 
~(l - v)d 

n' = .2L(l - v) (~ - ~o)d. 
4Gb 

(8) 

Now Stro~8) has shown that the most difficult step in the coalescence of 
dislocations is tne coalescence of the first two, the stress to add subsequent 
dislocations falling progressibely. Therefore very few dislocations will remain 
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